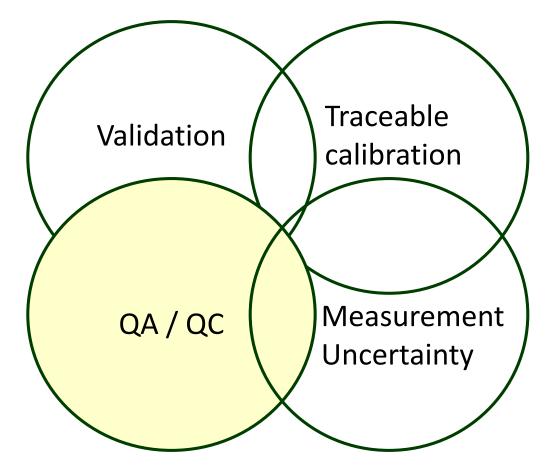


SADCWater PT Chemistry workshop 2018 – Part 2: Quality Control Charts

Maré Linsky 26-27 November 2018


Ensuring valid Analytical Measurements

Ensuring valid Analytical Measurements

Overview

- General concepts and statistical background
- Type of control charts
- Quality control samples
 - Types
 - Requirements
 - Advantages & Disadvantages
- Setting up an Internal Quality control program
 - Setting control limits
- Evaluation of Quality control charts

Introduction: Quality control

Quality control program

- Measures to ensure that a validated method remains "in control"
- Continuous evaluation of laboratory's methods and working routines
- Cover the complete analytical process:
 - Physical sample preparation, e.g. drying, milling, etc.
 - Chemical sample preparation, e.g. digestion, extraction, dilution, etc.
 - Analysis, e.g. wet chemistry, instrumental analysis
 - Reporting

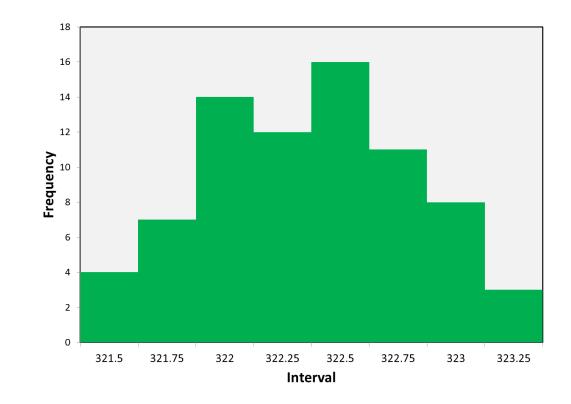
Laboratory Quality control

• External quality control

- Proficiency testing
 - Reproducibility & Bias checks
- Internal quality control
 - Statistical process control (SPC) charts: Used for daily quality control of routine analytical work
 - Simple graphical tools
 - Very powerful changes in quality can be detected quickly
 - Monitors:
 - Bias
 - Within Laboratory Reproducibility
 - Repeatability

Statistical basis for QC

Repeated measurements


322,23	321,68 }	1	Frequency
322,49	321,75		321.5
322,18	321,76 >	3	321.75
322,07	321,97		
321,67	322,07		32 22
321,76	322,17	4	322.25
321,75	322,18		25 322.5
322,17	322,23		
322,56	322,36		322.75
321,68	322,40 >	3	323 323
322,36	322,49		323.25
322,40	322,56	1	25

Statistical basis for QC

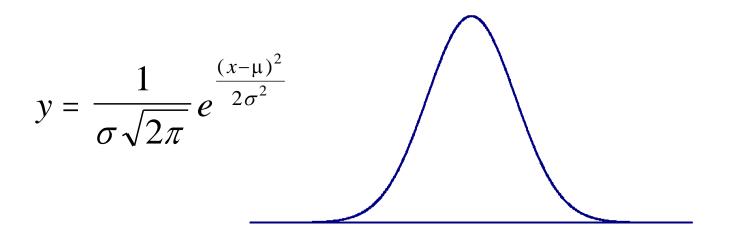
Variations are always present.

322,23 322,49 322,18 322,07 321,67 321,76 321,75 322,17 322,56 321,68 322,36 322,40

Population vs. Sample

04

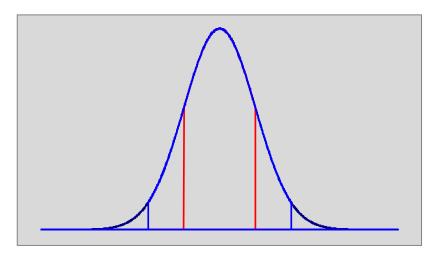
Sample	Population
A selection of 1000 inhabitants of a town	All inhabitants of a town
Any number of measurements of salinity in samples from the Indian Ocean	Not possible
18 16 14 12 10 6 4 2 2	


0

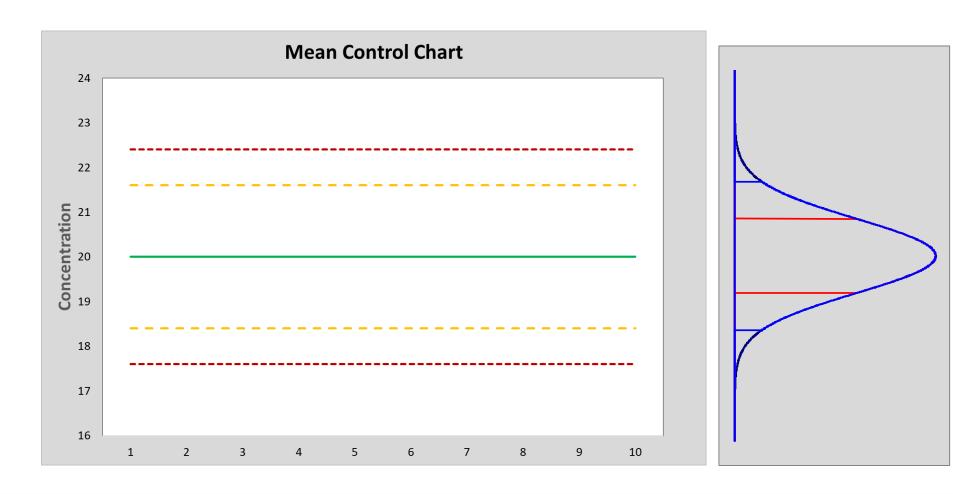
321.5 321.75 322 322.25 322.5 322.75 323 323.25 Interval

Normal Distribution

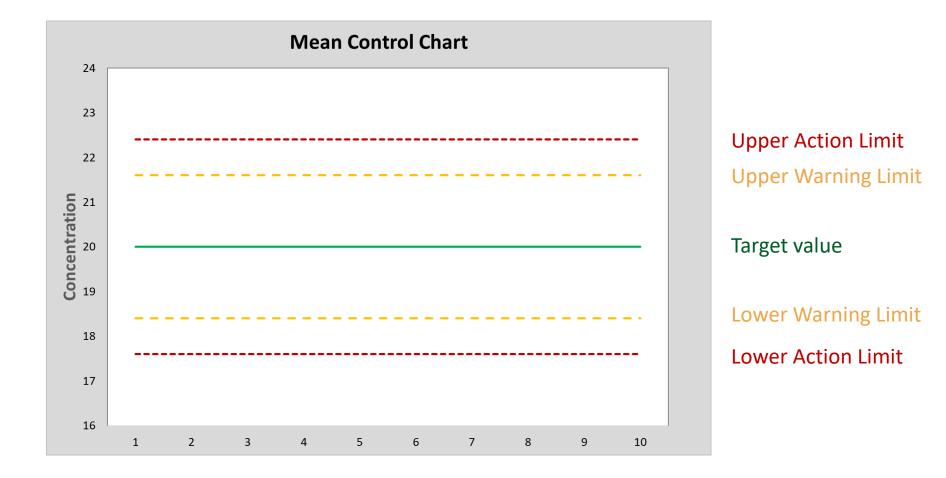
- The curve is symmetrical about $\boldsymbol{\mu}$
- The greater the value of σ the greater the spread of the curve
- Completely determined by μ and σ



Normal Distribution


Important Properties

- Approximately 68% (68,27%) of the data lie within $\mu \pm 1\sigma$
- Approximately 95 % (95,45%) of the data lie within $\mu \pm 2\sigma$
- Approximately 99,7 % (99,73%) of the data lie within $\mu \pm 3\sigma$



Control Charts: General Concepts

Control Charts: General Concepts

Control Charts: General Concepts

Statistical Process Control Chart (How a process behaves over time) **Clinical Process XYZ** Title Assignable ("special cause") variation Upper control Random ("common cause") limit variation Values Observed Centerline Lower control The further a point moves off the center line the higher the limit probability it is not random variation and the greater the probability you can identify an assignable cause.

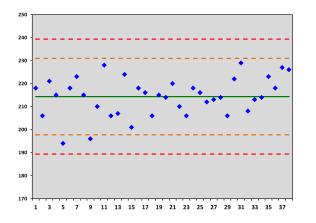
Time

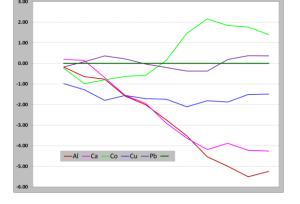
NMISA © Copyright 2018

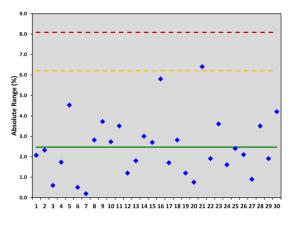
TQM-5134-3

Control Charts - General concepts

- Displays results vs. time
- Target value / Central line (CL)
 - Mean
 - Reference value


Control Limits

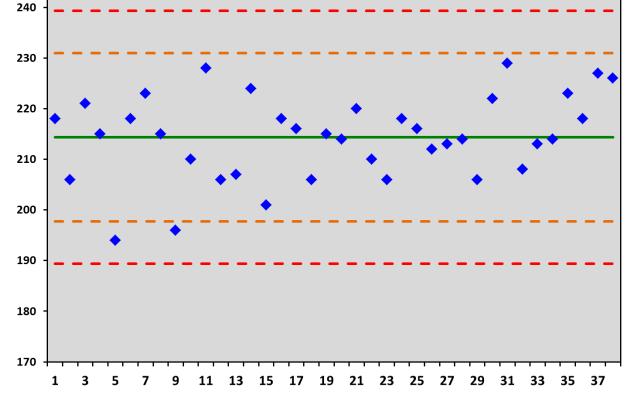

- Warning limit
 - Upper and Lower: CL ± 2s
 - 95 % of results should be within this limit, i.e. 5% of correct results can be expected to exceed this limit
- Action Limit
 - Upper and Lower: CL ± 3s
 - 99.7 % of results should be within this limit, i.e. only 0.3% of correct results can be expected to exceed this limit – very unlikely


Types of Control Charts

- X-chart (Shewart / Mean control chart)
- Range-chart (R or r%)
- Cumulative charts

Mean / X-control chart

- Characterised by mean, upper and lower warning and control limits
 - Shows distribution of control values around a central value (mean or reference value)
 - Monitor systematic and random effects
- Control samples
 - Reference material (CRM / RM)
 - Test sample / Inhouse control sample
 - Blank
 - Reagent blank
 - Sample matrix blank
 - Standard solution


250

Mean Control Chart

Central line: • Mean

Action limit: • Mean ± 3s

Mean / X-control chart

- QC information available from X-control charts
 - QC / CRM sample
 - Intermediate precision
 - Changes in systematic error
 - Trueness (if CRM is used)
 - Blank
 - Reagents
 - Potential environmental contamination

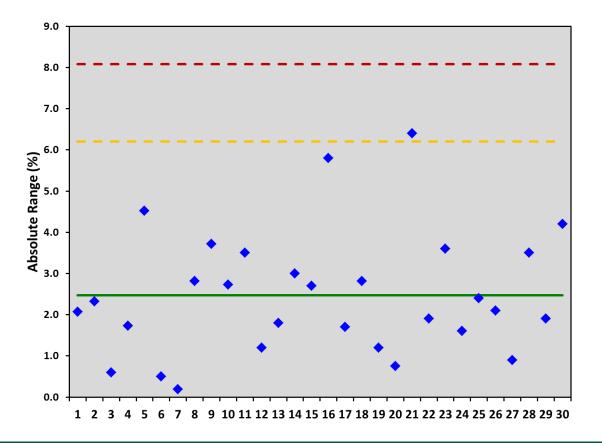
Range Control Chart

- Monitors repeatability
- Range = Difference (Max-Min) of replicate analysis of randomly selected <u>test samples</u>
 - Typically proportional to concentration (at levels above LOD/LOQ)
 - At levels close to LOD/LOQ, range no longer proportional to concentration so recommended to use absolute range
- Characterised by central line and upper warning and control limits
- Important to perform same number of measurements for test samples as for control samples

Range Control Chart

- Real samples analysed in duplicate/triplicate/ etc.
- Calculate
 - %Absolute Range
 - Mean %Range
 - Standard deviation

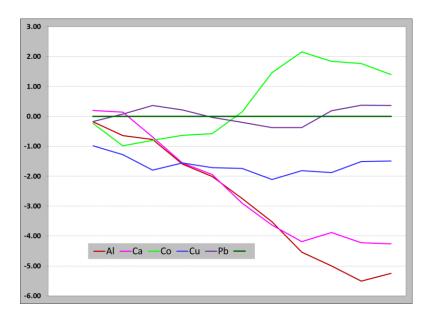
$$\% Range(i) = \frac{Max - Min}{Mean} \times 100$$


$$s = \frac{MeanRange}{d_2}$$

Number of replicate measurements (n)	d ₂
2	1.128
3	1.693
4	2.059
5	2.326

Range Control Charts

• Replicate analysis of routine test samples


- Action limit: Mean ± 3.69s
- Warning limit: Mean ± 2.83s
- Central line: Mean Range

Control Charts

CUSUM chart

- Cumulative sum of all errors from one target value
 - Difference between target value and measurement result is added to the sum of all the previous differences
- Faster detection of change in process
- Can identify point at which process went out of control

Quality Control samples

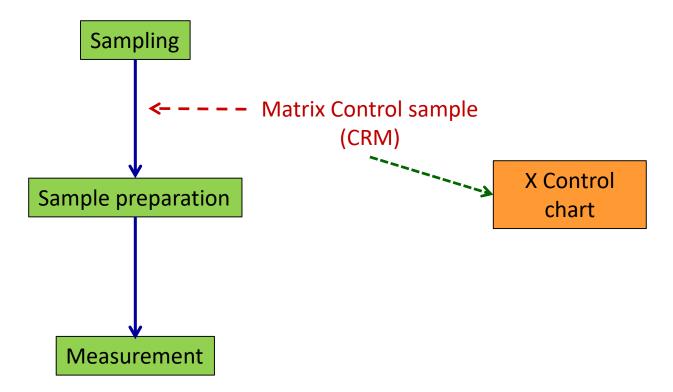
• Requirements:

- Ideally control sample should go through the whole measurement procedure
- Should be representative of typical samples, i.e. must be similar in matrix and concentration to test samples
- Homogeneous
- Sufficient quantities (more than a year)
- Stable / Long term stability

Type of Quality control samples

- CRM: Certified reference material
- RM: Reference material
- Standard solutions / appropriate calibration material
- In-house control sample
- Test samples
 - Replicate analysis of routine test samples
- Blank samples
 - Standard / Reagent blank
 - Matrix blank

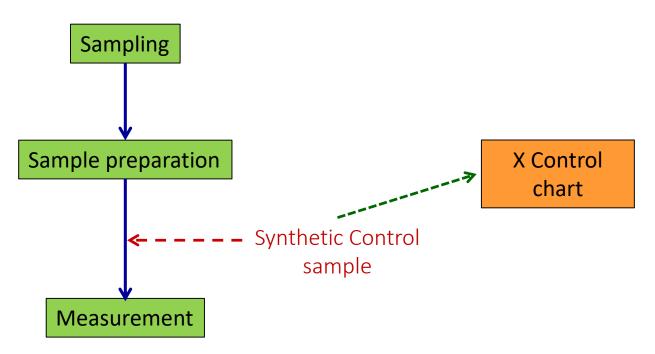
Control sample type I: Matrix CRM


• Pro's

- Excellent way to monitor for Bias (systematic effect)
- Stability and homogeneity is guaranteed
- Control data can be used to determine uncertainty
- Con's
 - Homogeneity of CRMs are often better than test samples' homogeneity, so will tend to give an overly optimistic estimate of within laboratory reproducibility
 - Very difficult to closely match matrix and analyte concentration
 - Expensive

• Mean control chart

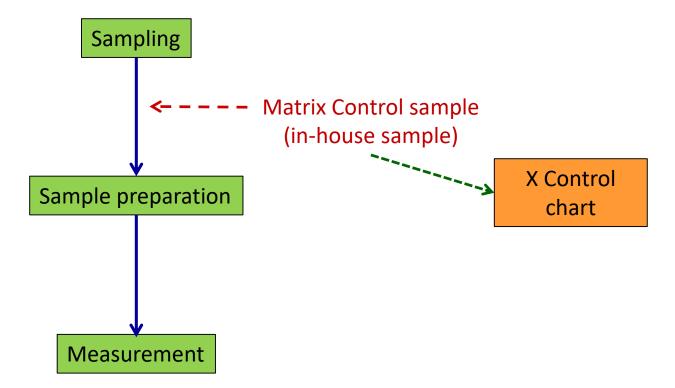
• Control sample covering the whole analytical process


Control sample type II:

- Standard Solutions prepared by the laboratory
 - Prepared from pure standards / chemicals and solvents
 - Critical that different source of traceability
 - Different manufacturer
 - K-salt instead of Na-salt (e.g. NO₃ standard)
 - Expanded Uncertainty should not be more than 20 to 25% of target standard deviation of control chart
- Pro's:
 - Easy to prepare and readily available
 - Effective approach to monitor Bias (systematic effect)
- Con's
 - Depending on method, only partially monitors within laboratory reproducibility / repeatability (doesn't cover the complete analytical process)
- Mean control chart

Control sample not covering the whole process, matrix different

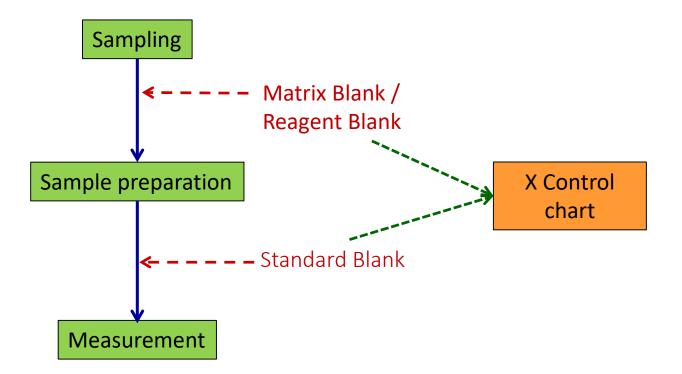
Control sample type II (cont)



- In-house material (ISO Guide 80)
 - Collected by the laboratory or selected from samples received
 - Sufficient quantities for at least a year
 - Homogeneity testing
 - Stability testing
- Pro's
 - Exactly matches test samples
 - Cheap
 - Excellent way to monitor within laboratory reproducibility (covers the whole analytical process)
- Con's
 - Laboratory has to ensure stability and homogeneity itself
 - No reference value (i.e. only partial bias evaluation)
- Mean control chart

• Control sample covering the whole analytical process

Control sample Type III

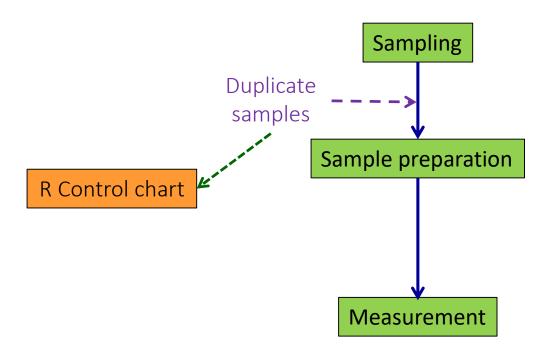


• Blank sample

- Calibration, preparation or matrix blank
- Monitors:
 - Limit of Detection (LOD)
 - Limit of Quantification (LOQ)
 - Contamination
 - Reagent quality
- Mean control chart

• Blank covering / not covering the whole process

Control sample Type IV



- Randomly selected test samples run in replicate (typically duplicate)
- Pro's
 - True reflection of sample matrix, homogeneity and concentration
 - Useful where test samples are not stable, i.e. no mean control chart possible
- Con's
 - No long term precision information
 - Cannot monitor potential systematic effects (Bias)
- Range control chart

 No stable control sample, only duplicate / triplicate test sample analysis

Setting up Internal quality control program

• Determine:

- Type of Control chart(s)
- Control sample(s)
 - Type
 - Frequency
 - Concentration range
- Control limits
 - Central line
 - Warning and Action limits
 - Initially base on method validation information

• General Recommendations:

- Record one more significant digit than for test results
- Report values below LOD
- Report negative values

Setting up Internal quality control program

- Mean / x-control chart
- Range control chart

Control sample

- Type:
 - CRM
 - Inhouse sample
 - Synthetic sample
 - Replicate test samples
 - Blank
- Concentration range
 - Number of QC samples: Low, medium and/high concentration

Setting up Internal quality control program

- Control sample:
 - Frequency
 - Minimum 1/batch
 - Typically 5% of batch
 - Lower for high sample throughput
 - 20-50% possible for complex procedures or non-routine analysis
 - Depend on nature, criticality, batch size, frequency with which method is employed and complexity of the method

Control charts – Setting limits

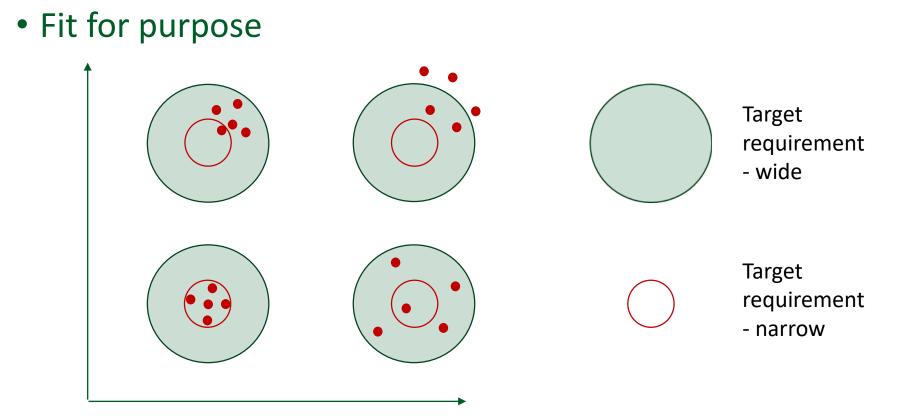
- Central value (CL)
 - Based on analytical performance of method
 - Mean from QC data ideally collected over period of at least a year
 - Based on assigned reference value
 - Central line is reference value from CRM or wellcharacterised material (e.g. RM or PT sample)

Control charts – Setting limits

• Control limits

- Statistical control limits (s_R): Based on method performance
 - Based on routine analysis, i.e. typical precision
 - Repeatability: Too narrow limits
 - Reproducibility: Too wide limits
 - Within laboratory reproducibility (S_{Rw})
- Target control limits: Independent quality criteria
 - Customer requirements
 - Regulatory requirements

Control charts – Setting limits



• Statistical control limits

- Within laboratory Reproducibilty (s_{Rw})
 - Based on analytical performance of method
 - Standard deviation (s_{Rw}) of data ideally collected over period of at least a year
 - WL = CL $\pm 2s_{Rw}$
 - $AL = CL \pm 3s_{Rw}$
- Target control limits
 - Based on fit-for-purpose analytical requirement
 - s_{Rw} = Analytical requirement (e.g. legislation, production requirement, client specification)
 - WL = CL $\pm 2s_{Rw}$
 - $AL = CL \pm 3s_{Rw}$

Setting QC targets

Determination of Pb in water with ICP-MS

- Laboratory collected a sufficiently large quantity of a lake water sample and preserved it in HNO₃.
- Target limits based on statistical limits from experimental data collected over a period of 3 months (n=30)
 - Mean concentration = 0.294 μ g/L
 - Standard deviation = $0.008 \mu g/L$
- The within laboratory precision requirement from the client for this analysis is 5%

Determination of Pb in water with ICP-MS

• Quality control plan:

- Mean control chart
- Control sample Type II: In-house control sample
 - Monitors potential bias (partially) and within laboratory reproducibility
- Central line = Mean = $0.294 \,\mu g/L$
- Statistical control limits
 - Warning limits = Mean ± 2 *Rw = 0.294 $\pm 0.018 \mu g/L$
 - Action limits = Mean \pm 3*Rw = 0.294 \pm 0.024 μ g/L
- Vs
- Target control limits
 - Warning limits = Mean ± 2*5% = 0.294 ± 0.029 μg/L
 - Action limits = Mean $\pm 3*5\% = 0.294 \pm 0.044 \, \mu g/L$

Setting control limits: R-chart

- Only Upper limits
- Statistical control limits
 - Data collected over extended period of time, e.g. 1 year
 - CL = Mean range
 - Standard deviation =
 - Mean range/1.128
 - Pooled standard deviation
 - Warning limit = CL + 2.83 s
 - Control limit = CL + 3.69 s

• Target control limits

- Based on repeatability requirement
- CL = 1.128*s
- Warning limit = CL + 2.83 s
- Control limit = CL + 3.69 s

Determination of N-NH₄ in water with indophenol blue method

- Laboratory prepared a 20 μg/L synthetic solution from NH₄SO₄ (different source from calibration standards) which is analysed with every batch of water samples analysed
 - Mean = 19.99 μg/L
 - Standard deviation = 0.521 μ g/L
- The laboratory also analyse one test sample in duplicate for every batch of 20 samples received
 - Mean range = $0.559 \,\mu g/L$
- All test samples analysed are typically close to the LOQ of the method

Determination of N-NH₄ in water with indophenol blue method

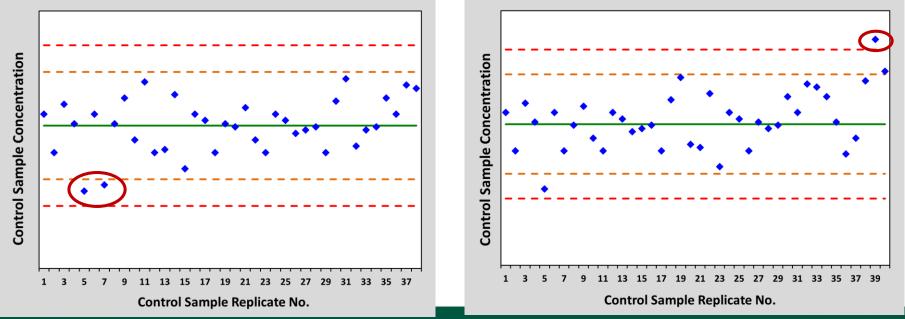
• Mean control chart

- Central line = Mean = $19.99 \ \mu g/L$
- Statistical control limits
 - Standard deviation = 0.521 μg/L
 - Warning limits = Mean ± 2 *Rw = 19.99 $\pm 1.042 \mu g/L$
 - Action limits = Mean ± 3*Rw = 19.99 ± 1.566 μg/L

Range control chart

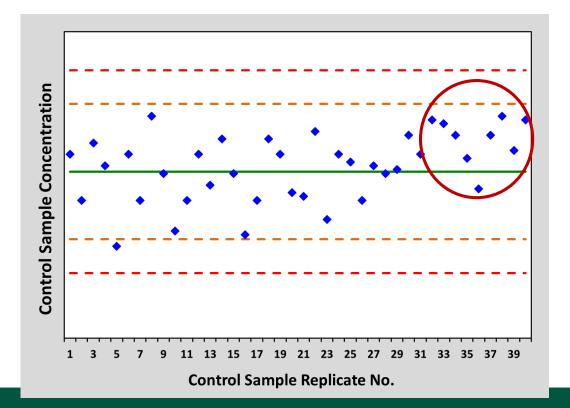
- Central line = Mean range = $0.559 \,\mu g/L$
- Statistical control limits
 - Standard deviation = Mean range / $1.128 = 0.496 \mu g/L$
 - Warning limits = Mean + $2*s = 0.559 + 0.992 \mu g/L$
 - Action limits = Mean + 3*s = 0.559 + 1.488 μg/L
- All test samples analysed are typically close to the LOQ of the method
 - Work with absolute and not relative scale

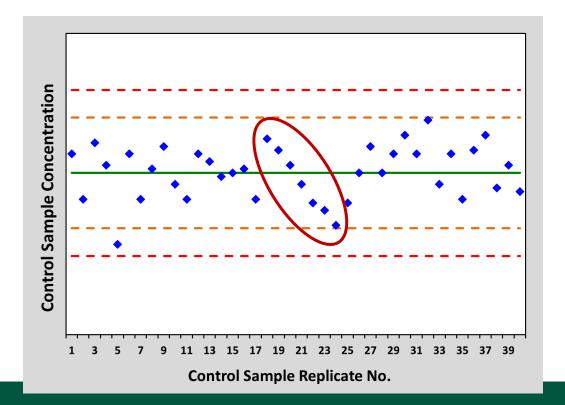
Evaluation of Control charts



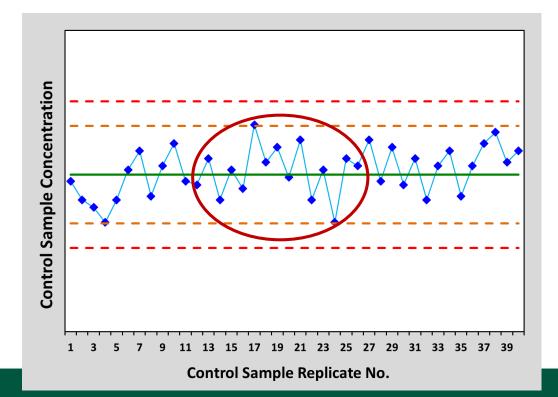
- Method in control
 - Control value within warning limits, OR
 - Control value between warning and control limit, but previous 2 values were within warning limits
- Method in control, but out of statistical control
 - Control value within warning limits, BUT
 - 7 consecutive control values are either increasing or decreasing
 - 10 out of 11 consecutive control values above / below central line (if central line is mean)
 - Report but investigate (preventative action). Indications that method is going out of control.
- Method is out of control
 - Control value outside action limits, OR
 - Control value between warning and action limit, but so where one of last two values
 - Do not report. Repeat all analysis performed since previous control sample were analysed.

Indication of "out-of-control" analytical procedure

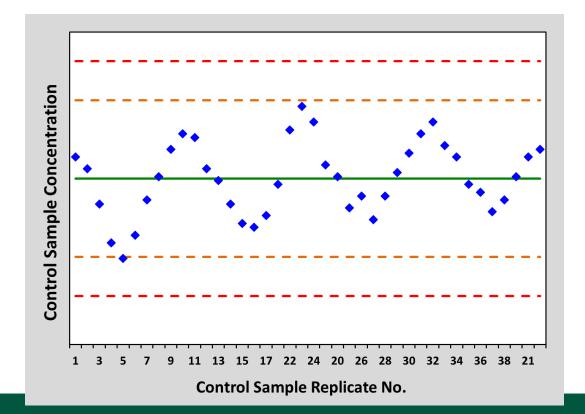

- Control limits
 - Warning: 2 out of 3 consecutive values outside limits
 - Action limit: 1 value outside limits


Method in control, but statistically "out-of-control"

- Systematic shift / Bias
 - 10 out of 11 consecutive values above or below mean


- Method in control, but statistically "out-of-control"
 - Trend
 - 7 consecutive values either increasing or decreasing

Method in control, but statistically "out-of-control"


- Zig-Zag
 - 14 or more consecutive values increasing and decreasing alternatively

• Method in control, but statistically "out-of-control"

- Cyclical pattern
 - Pattern observed over time

Out-of-control: Action

- Laboratory must clearly define out of control situations and actions, e.g.
 - Repeat control sample analyses
 - Repeat all sample instrumental analysis
 - Repeat sample preparation and analysis
- Critical to maintain good records, to allow rootcause analysis if method goes out of control, e.g.
 - Change in standards, reagents, analysts
 - Instrument problems

Long term Evaluation

- Recommend to review annually (or 60 data points)
- Check for changes in:
 - Mean: t-test
 - Δ Mean > 0,35*s
 - Standard deviation: f-test
 - > 6 outside warning limits
 - < 1 outside warning limits

• Ideally limits and central line should not be changing

- Control chart limits based on limited method validation data
- Target control limits may change if customer requirements (or legislation) changes
- Statistical control limits should not change unless there has been a system change
- Central line may be changed if control sample changes

Conclusion

- Very powerful tool to detect changes in quality of analytical results
 - Graphical representation of analysis already being performed in laboratory, e.g. analysis of CRMs, independent calibration standard check, blanks, duplicates.

• Must be Fit for Purpose

- Number and type of charts
- Representative QC samples
- Frequency
- Evaluation criteria

We measure what matters

an Indun

Thank you

Maré Linsky mlinsky@nmisa.org